كلية العلوم الدقيقة هيكل علوم المادةمقياس الديناميكا الحرارية 2021 السلسلة الأولى

التمرين الأول (يحل حضوريا):

علما أن مول واحد من غاز مثالي يشغل حجما قدره 22.4 I عند الشروط النظامية، أحسب قيمة الثابت R للغازات المثالية :

1 – بـ l.atm/k.mol ، 2 - في جملة الوحدات الدولية، 3 – بـ cal/k.mol - أستنتج معامل التحويل من l.atm إلى كل من J و اCa.

التمرين الثاني (يحل حضوريا):

خليط غازي معرف بكسوره المولية بحيث:

$$X_{N2} = 0.8$$
; $X_{O2} = 0.1$; $X_{CO2} = 0.1$

الضغط الجزئي للأكسجين هو 38 mmHg

1- أحسب الضغط الكلي للمزيج

 CO_2 و N_2 : أحسب الضغوط الجزئية لكل من

<u>التمرين الثالث (يحل حضوريا)</u>:

لدينا كتلة مساويةل: **80g** من خليط غازي متكون من النتروجين (№)والميثان(CH₄)، تحتوي بالوزن على **31,4%** من النتروجين وتشغل حجما قدره **0,995 I** عند **150°C**.

- ✓ أحسب الضغط الكلي للمزيج الغازي.
 - √ الضغط الجزئي لكل غاز.

 \checkmark C = 12g, N = 14g, H = 1g

التمرين الرابع (بحل حضوريا):

تصف كمية من غاز مثالي وبصفة عكوسة حلقة إحداثيات نقاطها مبينة في الجدول المرفق:

1- مثل هذه التحولات على مخطط كلابيرون.

	1	2	3	4	أ- اعطي التسمية الكاملة لكل تحول
n (mol)	0,2	0,2	0,2	0,2	
V(I)	1	5,08	5,08	1,24	
P (atm)	10	1,97	0,95	10	
T(K)	600	600	295	756	

التمرين الخامس (يحل حضوريا):

في محرك حراري يشتغل بالهواء، يصف 1مول من الهواء (نعتبره غاز مثالي) بصفة عكوسة حلقة التحولات التالية:

- A_2 إلى الحالة A_1 (P_1 =1atm, T_1 =350K) تقلص متساوي درجة الحرارة من الحالة (P_2 =8atm, T_1)
 - ♦ تسخین متساوي الضغط من الحالة (A₂ (T₃=1400K) تسخین متساوي الضغط من الحالة (A₂ (T₃=1400K) *
 - ♦ تمدد كظوم من A₃ إلى الحالة ٩.
 - ❖ تبريد متساوي الضغط من الحالة 4₄ إلى الحالة الابتدائية 1
 - 1- أحسب إحداثيات كل النقاط.
 - 2- مثل هذه الحلقة على مخطط P,V
 - (J) بالجول \mathbf{Q} , \mathbf{W} , $\Delta \mathbf{U}$, $\Delta \mathbf{H}$ الجول وللحلقة
 - 4- هل الحلقة محركة أو مقاومة (مع التبرير)
 - 5- أحسب مردود الحلقة وقارنه بمردود حلقة كارنو الموافقة

$R = 8,31 \text{ J.mol}^{-1}.K^{-1}$ $R = 2 \text{ cal.mol}^{-1}.K^{-1}$ $R = 0,082 \text{ l.atm.mol}^{-1}.K^{-1}$ $\gamma = (7/5)$

التمرين السادس (إضافي):

نخضع 1 مول من غاز مثالي لسلسلة من التحولات العكوسة التالية :

تقلص متساوي درجة الحرارة AB، متبوع بتمدد كظوم BC، ثم تسخين متساوي الضغطCA

- 1. احسب إحداثيات النقاط A, B, C
- 2. مثل الحلقة ABCA على **مخطط** 2
- Cal ب W, Q, ΔU , ΔH وللحلقة ΔU
 - 4. ناقش إشارة العمل بالنسبة للحلقة wcycle
- أحسب مردود الحلقة و قارنه بمردود حلقة كارنو الموافقة.

 $P_A = P_C = 2atm$; $P_B = 10atm$; $T_A = 300 \text{ K}$; $C_P = (7/2)R$; $C_V = (5/2)R$

التمرين السابع (اضافي):

يشغل غاز مثالي ابتداء حجما قدره 10تحت 10وعند 1060 ، يخضع إلى تحول عكوس يتركب من تمدد متساوي درجة الحرارة متبوع بتبريد متساوي الحجم . مثل هذا التحول على مخطط ($\mathbf{P,V}$). إذا علمت أن الغاز استقبل كمية من الحرارة (\mathbf{Q}_{ABC}) تساوي $\mathbf{207cal}$ وانتج عملا (\mathbf{W}_{ABC})يعادل $\mathbf{390cal}$.

- 1- احسب إحداثيات الحالة النهائية التي بلغها الغاز. نخضع الغاز بعد ذلك إلى انضغاط كظوم وعكوسCD يرجعه إلى ضغطه الابتدائي.
 - 2- مثل هذا التحول على المخطط واحسب حجم ودرجة حرارة الغاز.
 - 3- ما نوع التحول**DA** المتبقي الذي يخضع إليه الغاز حتى نرجعه إلى حالته الابتدائية.
 - $C_p = 5 \text{ cal.K}^{-1}.\text{mol}^{-1}$ -4